Structure Reports

Online
ISSN 1600-5368

Eric T. Mack, Matthew J. Brown, Jeanette A. Krause,* Deborah L. Lieberman and Allan R. Pinhas

Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, USA

Correspondence e-mail: jeanette.krause@uc.edu

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.023$
$w R$ factor $=0.061$
Data-to-parameter ratio $=14.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(2-Bromo-4-chloroanilino)-2-phenylethanol

The title complex, $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrClNO}$, adopts a helical motif built up from intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions with a repeat distance of $8.4 \AA$. Further assembly of the helices forms a parallel square grid array reminiscent of apolar peptide extended packing motifs.

Comment

In an effort to give our undergraduate laboratory exercises a more research-focused environment, students were instructed to investigate synthetic routes to aziridines. As indicated in the scheme, reacting 2-phenyloxirane with p-chloroaniline was thought to be a convenient route to accomplish this goal. What was discovered was that the amine reacted with the oxirane to form 2-(4-chloroanilino)-2-phenylethanol. Upon subsequent addition of the $\mathrm{PPh}_{3} / \mathrm{Br}_{2}$ solution, however, bromination took place, resulting in the title complex, (I), rather than causing ring closure to form the aziridine.

β-Amino acids and β-aminoalcohols play a role in both synthetic organic and medicinal chemistry (Cole, 1994; Seebach et al., 1996; Goodman \& Gilman, 1985). Just as 2-(4-nitroanilino)-2-phenylethanol (Chinnakali et al., 1998), (I) is a β-aminoalcohol derivative. Structural features of (I) (Fig. 1) include planar, nearly perpendicular, benzene rings [dihedral angle $=83.98(5)^{\circ}$ versus $90.0(5)^{\circ}$ for the nitroanilino analog]. Other metrical details are as expected and agree with literature values (Allen et al., 1987).

Received 15 July 2005 Accepted 28 July 2005 Online 6 August 2005

Figure 1
The structure of (I), showing the atomic numbering scheme and 50% probability displacement ellipsoids.

Figure 2

(a) The helical packing motif of (I) generated by intermolecular $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ interactions (dashed lines) (the c axis runs vertically and the a axis runs horizontally). Only OH and NH H atoms are shown. (b) The square helicoid, viewed down the helix.

Figure 3
The parallel square grid array ($a b$ plane). Only OH H atoms are shown. Hydrogen bonds are shown as dashed lines.

Of interest is the secondary structure of (I), which packs in a helical motif (Fig. 2). The square helicoid (Fig. 2b) is generated by crystallographic fourfold symmetry. The helix is built up from intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions $\left[\mathrm{O} 1 \cdots \mathrm{O} 1^{\mathrm{i}}=\right.$ 2.756 (1) $\AA, \mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{i}}=2.003$ (3) $\AA, \mathrm{O} 1-\mathrm{H} 1=0.77$ (3) \AA and $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{i}}=170(3)^{\circ}$; symmetry code: $\left.\frac{1}{4}-y, x-\frac{1}{4}, z-\frac{1}{4}\right]$. In Fig. $2 a$, one can see that the helix repeat is such that molecules 1 and 5 are stacked with a repeat distance of 8.4031 (4) \AA (the unit cell b-axis length). Further assembly of the helices forms a parallel square grid array (Fig. 3), a secondary motif commonly found for apolar peptides (Karle, 1992). The channels formed in this array are devoid of solvent due to the benzene rings pointing inward, creating only a small cavity for potential solvent molecules (vertical/horizontal dimension between the benzene H atoms is approximately $3 \AA$, while the diagonal dimension is approximately $5 \AA$). The secondary structure of 2-(4-nitroanilino)-2-phenylethanol differs in that it packs as cylindrical channels about a threefold axis arising from $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ trimers $[\mathrm{O} \cdots \mathrm{O}=2.710(5) \AA$, $\mathrm{H} \cdots \mathrm{O}=1.85(4) \AA$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=164(3)^{\circ}$; Chinnakali et al., 1998]. Other compounds containing the $-\mathrm{NH}-\mathrm{CH}(\mathrm{Ph})-$ $\mathrm{CH}_{2}-\mathrm{OH}$ fragment show a diverse assortment of secondary structures which include pleated sheets $\{e . g .(S)-(+)-2-[(1,1-$ dimethylethoxy)carbonyl]amino-2-phenylethanol; Sperandio et al., 1998\}, zigzag columns \{e.g. $N-\left[(R)-2^{\prime}\right.$-hydroxy- 1^{\prime} -phenylethyl]-(S)-1-aminio-1,2,3,4-tetrahydro naphthalene; Stalker et al., 2002\}, columns of co-crystallized pairs $\{$ e.g. (3S)-N-[(1R)-1-phenyl-2-hydroxyethyl]-3-phenyl-5-hexynamide triphenylphosphine oxide; Baek et al., 1989\}, bilayers or ladders \{e.g. methyl (2R)-(-)-2-chloro-3-[2'-hydroxy-1 ${ }^{\prime}(R)$ -phenyl-ethylammonio]propionate chloride; Gnecco et al., $2000\}$ and honeycomb nets $\{e . g . N-[(R)-\alpha$-(hydroxymethyl)-benzyl]-(1R,2S)-cis-2-methylcyclobutane carboxamide; Alexander et al., 2000\}.

Experimental

2-Phenyloxirane ($1.48 \mathrm{~g}, 0.04 \mathrm{~mol}$) and p-chloroaniline (5.11 g , 0.04 mol) were stirred at room temperature over a period of 24 h in the presence of a Lewis acid, in this case lithium perchlorate (0.53 g , 0.006 mol), to form 2-(4-chloroanilino)-2-phenylethanol (Hancock \& Pinhas, 2004). Compound (I) was isolated upon subsequent bromination of the aminoalcohol ($4.85 \mathrm{~g}, 0.02 \mathrm{~mol}$) using a pre-prepared solution of triphenylphosphine $(5.26 \mathrm{~g}, 0.02 \mathrm{~mol})$ and bromine $(3.20 \mathrm{~g}, 0.02 \mathrm{~mol})$ in acetonitrile (12 ml) and slow addition of cooled triethylamine $(6.01 \mathrm{~g}, 0.02 \mathrm{~mol})$. The mixture was allowed to stir at room temperature for 24 h . Suitable crystals of (I) were harvested by slow evaporation of a chloroform solution.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrClNO}$
$M_{r}=326.61$
Tetragonal, $I 4_{1} / a$
$a=25.5382$ (8) \AA
$c=8.4031(4) \AA$
$V=5480.5(4) \AA^{3}$
$Z=16$
$D_{x}=1.583 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART 6000 CCD diffractometer
 ω scans
 Absorption correction: multi-scan
 (SADABS; Sheldrick, 2003)
 $T_{\text {min }}=0.458, T_{\text {max }}=0.802$
 22328 measured reflections

Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023\)
\(w R\left(F^{2}\right)=0.061\)
\(S=1.10\)
2492 reflections
169 parameters
H atoms treated by a mixture of independent and constrained refinement
```

$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 8222 reflections
$\theta=3.5-67.9^{\circ}$
$\mu=5.78 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Plate, colorless
$0.16 \times 0.13 \times 0.04 \mathrm{~mm}$

2492 independent reflections
2405 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.045$
$\theta_{\text {max }}=67.9^{\circ}$
$h=-29 \rightarrow 30$
$k=-30 \rightarrow 30$
$l=-9 \rightarrow 10$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0325 P)^{2}\right. \\
& +4.3217 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=0.35 \mathrm{e}^{-3}{ }^{-3} \\
& \Delta \rho_{\min }=-0.37 \mathrm{e}^{-3}
\end{aligned}
$$

H atoms on N and O atoms were located directly and their positions were refined $[\mathrm{O} 1-\mathrm{H} 1=0.77(3) \AA$ and $\mathrm{N} 2-\mathrm{H} 2=0.79(2) \AA]$. H atoms on C atoms were either located directly or included in calculated positions and subsequently refined using a riding model $\left(\mathrm{C}-\mathrm{H}=1.00,0.99\right.$ and $0.95 \AA$ for $\mathrm{CH}, \mathrm{CH}_{2}$ and aromatic H atoms, respectively). H -atom displacement parameters were defined as $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$ or $1.2 U_{\text {eq }}(\mathrm{N}, C)$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL.

Funding for the diffractometer through NSF-MRI grant CHE-0215950 is gratefully acknowledged.

References

Alexander, J. S., Baldwin, J. E., Burrell, R. C. \& Ruhlandt-Senge, K. (2000). Chem. Commun. pp. 2201-2002.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Baek, D.-J., Daniels, S. B., Reed, P. E. \& Katzenellenbogen, J. A. (1989). J. Org. Chem. 54, 3963-3972.
Brandenburg, K. (2005). DIAMOND. Version 3.0b. Crystal Impact GbR, Bonn, Germany.
Bruker (2002). SMART (Version 5.631) and SAINT (Version 6.45A). Bruker AXS Inc., Madison, Wisconsin, USA.
Chinnakali, K., Fun, H.-K., Sriraghavan, K. \& Ramakrishnan, V. T. (1998). Acta Cryst. C54, 955-957.
Cole, D. C. (1994). Tetrahedron, 50, 9517-9582.
Gnecco, D., Orea, L, Galindo, A., Enriquez, R. G., Toscano, R. A. \& Reynolds, W. R. (2000). Molecules, 5, 998-1003.

Goodman, L. S. \& Gilman, A. (1985). The Pharmacological Basis of Therapeutics. New York: MacMillan.
Hancock, M. T. \& Pinhas, A. R. (2004). Synthesis, pp. 2347-2355.
Karle, I. L. (1992). Acta Cryst. B48, 341-356.
Seebach, D., Overband, M.; Kühnle, F. N. M., Martinoni, B., Oberer, L., Hommel, U. \& Widmer, H. (1996). Helv. Chim. Acta, 79, 913-941.
Sheldrick, G. M. (2003). SADABS (Version 2.10) and SHELXTL (Version 6.14). University of Göttingen, Germany.

Sperandio, C., Denis, J.-N., Averbuch-Pouchot, M.-T. \& Vallee, Y. (1998). C. R. Acad. Sci. Ser. IIc Chim. 1, 709-714.
Stalker, R. A., Munsch, T. E., Tran, J. D., Nie, X., Warmuth, R., Beatty, A. \& Aakeroy, C. B. (2002). Tetrahedron, 58, 4837-4849.

